BRAINSTEM ANATOMY, SURGICAL PROCEDURES AND CRANIAL NERVE MONITORING

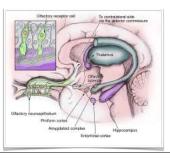
James Watt, BS, CNIM, R.EP.T MSET 2017

Thalamus

Midbrain

Pons

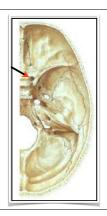
Medulla Oblongata


I. OLFACTORY NERVE

Sensory

• Not monitored during surgery

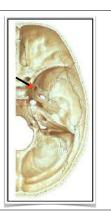
• Origin - Telencephalon


* Nuclei - Anterior olfactory nucleus

THE BIG PICTURE

THE BIG PICTURE

Optic Canal - II Superior Orbital Fissure - III, IV, VI and V(I) Foramen Rotundum - V(2)Foramen Ovale - V(3)Internal Acoustic Meatus - VII & VIII Jugular Foramen - IX, X, XI Hypoglossal Canal - X


THE BIG PICTURE

Optic Canal - II Superior Orbital Fissure - III, IV, VI and V(1) Foramen Rotundum - V(2) Foramen Ovale - V(3) Internal Acoustic Meatus - VII & VIII Jugular Foramen - IX, X, XI Hypoglossal Canal - X

THE BIG PICTURE

Optic Canal - II Superior Orbital Fissure - III, IV,VI andV(1) Foramen Rotundum - V(2) Foramen Ovale - V(3) Internal Acoustic Meatus - VII & VIII Jugular Foramen - IX, X, XI Hypoglossal Canal - X

THE BIG PICTURE

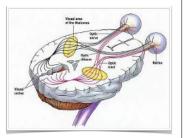
Optic Canal - II Superior Orbital Fissure - III, IV, VI and V(1) Foramen Rotundum - V(2) Foramen Ovale - V(3) Internal Acoustic Meatus - VII & VIII Jugular Foramen - IX, X, XI Hypoglossal Canal - X

THE BIG PICTURE

Optic Canal - II Superior Orbital Fissure - III, IV,VI and V(1) Foramen Rotundum - V(2) Foramen Ovale - V(3) Internal Acoustic Meatus - VII & VIII Jugular Foramen - IX, X, XI Hypoglossal Canal - X

THE BIG PICTURE

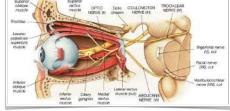
Optic Canal - II Superior Orbital Fissure - III, IV,VI and V(1) Foramen Rotundum - V(2) Foramen Ovale - V(3) Internal Acoustic Meatus - VII & VIII Jugular Foramen - IX, X, XI Hypoglossal Canal - X



Optic Canal - II Superior Orbital Fissure - III, IV,VI andV(I) Foramen Rotundum - V(2) Foramen Ovale - V(3) Internal Acoustic Meatus - VII & VIII Jugular Foramen - IX, X, XI Hypoglossal Canal - X

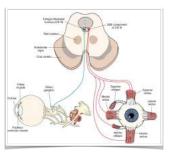
2. OPTIC NERVE

- Sensory
- Monitored using Flash Visual Evoked Potentials during surgery
- Origin Retina
- Nucleus Lateral geniculate nucleus



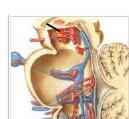
3. OCULOMOTOR

• Mainly motor

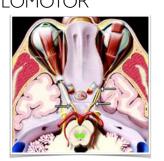

- Spontaneous and triggered EMG monitored during surgery
- Origin Anterior aspect of Midbrain
- Nucleus Oculomotor nucleus, Edinger-Westphal nucleus

Summer Summer

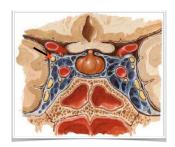
3. OCULOMOTOR


- Mainly motor
- Spontaneous and triggered EMG monitored during surgery
- Origin Anterior aspect of Midbrain
- Nucleus Oculomotor nucleus, Edinger-Westphal nucleus

3. OCULOMOTOR


Mainly motor

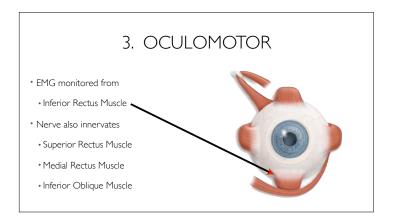
- Spontaneous and triggered EMG monitored during surgery
- Origin Anterior aspect of Midbrain
- Nucleus Oculomotor nucleus, Edinger-Westphal nucleus


3. OCULOMOTOR

- Mainly motor
- Spontaneous and triggered EMG monitored during surgery
- Origin Anterior aspect of Midbrain
- Nucleus Oculomotor nucleus, Edinger-Westphal nucleus

3. OCULOMOTOR

- Mainly motor
- Spontaneous and triggered EMG monitored during surgery
- Origin Anterior aspect of Midbrain
- Nucleus Oculomotor nucleus, Edinger-Westphal nucleus



3. OCULOMOTOR

Supar Levator pelpebree

- Mainly motor
- Spontaneous and triggered EMG monitored during surgery
- Origin Anterior aspect of Midbrain
- * Nucleus Oculomotor nucleus, Edinger-Westphal nucleus

superior divisio Trocklear nerve ral rectus muscle Abducess nerve ve, inferior division infector rectus muscle infertion oblique m Medial rectus m

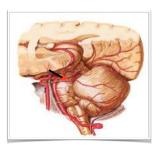
3. OCULOMOTOR

* EMG monitored from

• Inferior Rectus Muscle •

Nerve also innervates

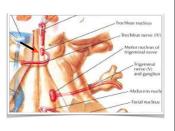
- Superior Rectus Muscle
- Medial Rectus Muscle
- * Inferior Oblique Muscle



4. TROCHLEAR NERVE • Motor Superic oblique muscle • Spontaneous and triggered EMG monitored during surgery Superio orbital fissure • Origin - Dorsal aspect of Midbrain Trochlear nerve (IV)

• Nucleus - Trochlear nucleus

4. TROCHLEAR NERVE

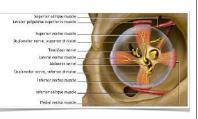

- Motor
- * Spontaneous and triggered EMG monitored during surgery
- Origin Dorsal aspect of Midbrain
- Nucleus Trochlear nucleus

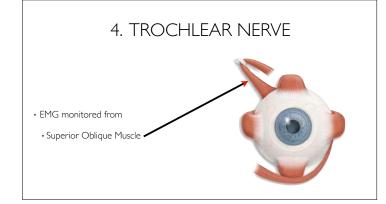
4. TROCHLEAR NERVE

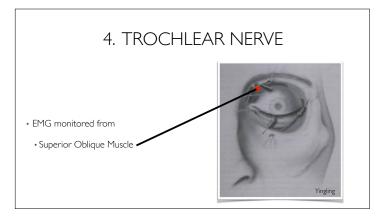
• Motor

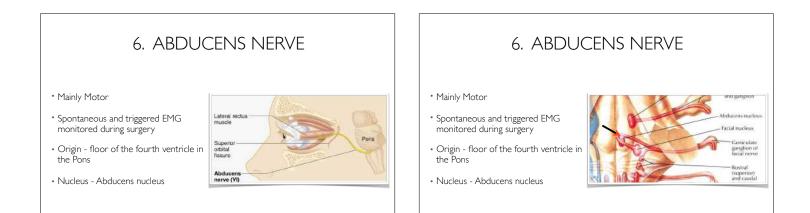
- * Spontaneous and triggered EMG monitored during surgery
- Origin Dorsal aspect of Midbrain
- Nucleus Trochlear nucleus

4. TROCHLEAR NERVE

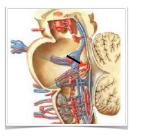

- Motor
- Spontaneous and triggered EMG monitored during surgery
- Origin Dorsal aspect of Midbrain
- Nucleus Trochlear nucleus




4. TROCHLEAR NERVE


• Motor

- Spontaneous and triggered EMG monitored during surgery
- Origin Dorsal aspect of Midbrain
- Nucleus Trochlear nucleus

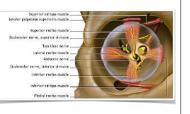


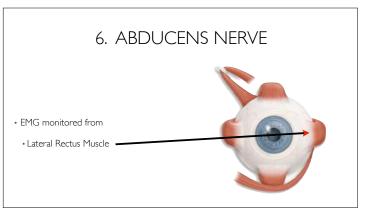
6. ABDUCENS NERVE

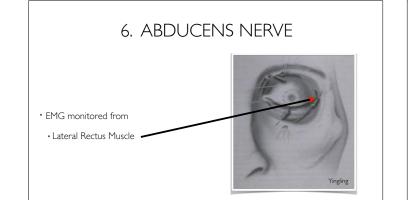
- Mainly Motor
- Spontaneous and triggered EMG monitored during surgery
- Origin floor of the fourth ventricle in the Pons
- Nucleus Abducens nucleus

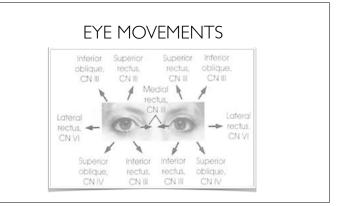
6. ABDUCENS NERVE

Mainly Motor

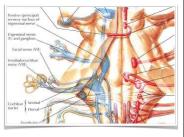

- Spontaneous and triggered EMG monitored during surgery
- Origin floor of the fourth ventricle in the Pons
- Nucleus Abducens nucleus



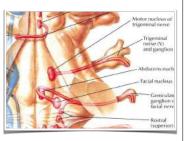

6. ABDUCENS NERVE


• Mainly Motor

- Spontaneous and triggered EMG monitored during surgery
- Origin floor of the fourth ventricle in the Pons
- Nucleus Abducens nucleus


5. TRIGEMINAL NERVE

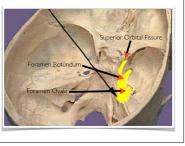
- Mixed Sensory and Motor
- Motor component monitored during surgery using spontaneous and triggered EMG
- Sensory component monitored using trigeminal SEPs and blink reflex
- Origin Pons
- Nucleus Trigeminal nucleus


5. TRIGEMINAL NERVE

- Mixed Sensory and Motor
- Motor component monitored during surgery using spontaneous and triggered EMG
- Sensory component monitored using trigeminal SEPs and blink reflex
- Origin Pons
- Nucleus Trigeminal nucleus

5. TRIGEMINAL NERVE

- Mixed Sensory and Motor
- Motor component monitored during surgery using spontaneous and triggered EMG
- Sensory component monitored using trigeminal SEPs and blink reflex
- Origin Pons
- Nucleus Trigeminal nucleus


5. TRIGEMINAL NERVE

- Mixed Sensory and Motor
- Motor component monitored during surgery using spontaneous and triggered EMG
- Sensory component monitored using trigeminal SEPs and blink reflex
- Origin Pons
- Nucleus Trigeminal nucleus

5. TRIGEMINAL NERVE

- Mixed Sensory and Motor
- Motor component monitored during surgery using spontaneous and triggered EMG
- Sensory component monitored using trigeminal SEPs and blink reflex
- Origin Pons
- Nucleus Trigeminal nucleus

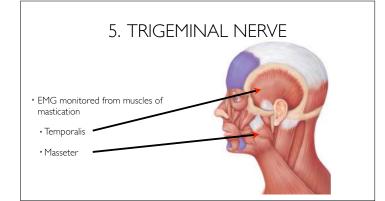

5. TRIGEMINAL NERVE

- Mixed Sensory and Motor
- Motor component monitored during surgery using spontaneous and triggered EMG
- Sensory component monitored using trigeminal SEPs and blink reflex
- Origin Pons
- Nucleus Trigeminal nucleus

5. TRIGEMINAL NERVE

- Mixed Sensory and Motor
- Motor component monitored during surgery using spontaneous and triggered EMG
- Sensory component monitored using trigeminal SEPs and blink reflex
- Origin Pons
- Nucleus Trigeminal nucleus

5. TRIGEMINAL NERVE



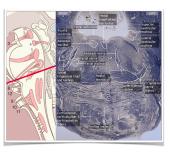
VI - Opthalmic

V2 - Maxillary

V3 - Mandibular

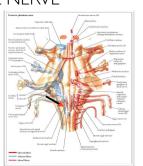
7. FACIAL NERVE • Mixed sensory and motor Motor component monitored using spontaneous and triggered EMG monitored during surgery • Origin - Cerebellopontine angle

* Nucleus - Facial nucleus, solitary nucleus, superior salivary nucleus



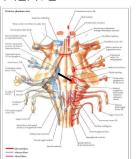
7. FAC	IAL NERVE	Ē
 Mixed sensory and motor Motor component monitored using spontaneous and triggered EMG monitored during surgery 	Branchial motor (special visceral efferent)	Supplies the muscles of fadal expression; posterior belly of digestific muscle; stylohyoid, and stappedius.
	Visceral motor (general visceral efferent)	Parasympathetic innervation of the lacrimal, submandibular, and sublinguia glands, as well as muccus membranes of nasopharyms, hard and soft paiste
• Origin - Cerebellopontine angle	Special sensory (special afferent)	Taste sensation from the anterior 2/3 of tongue; hard and soft palates.
 Nucleus - Facial nucleus, solitary nucle superior salivary nucleus 	General sensory (general somatic afferent)	General sensation from the skin of the concha of the auricle and from a small area behind the eer.

7. FACIAL NERVE

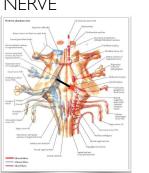

• Mixed sensory and motor

- Motor component monitored using spontaneous and triggered EMG monitored during surgery
- Origin Cerebellopontine angle
- Nucleus Facial nucleus, solitary nucleus, superior salivary nucleus

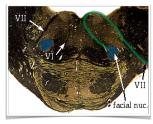
7. FACIAL NERVE


- Mixed sensory and motor
- Motor component monitored using spontaneous and triggered EMG monitored during surgery
- Origin Cerebellopontine angle
- Nucleus Facial nucleus, solitary nucleus, superior salivary nucleus

7. FACIAL NERVE


• Mixed sensory and motor

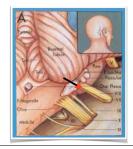
- Motor component monitored using spontaneous and triggered EMG monitored during surgery
- Origin Cerebellopontine angle
- Nucleus Facial nucleus, solitary nucleus, superior salivary nucleus


7. FACIAL NERVE

- Mixed sensory and motor
- Motor component monitored using spontaneous and triggered EMG monitored during surgery
- Origin Cerebellopontine angle
- Nucleus Facial nucleus, solitary nucleus, superior salivary nucleus

7. FACIAL NERVE

- Mixed sensory and motor
- Motor component monitored using spontaneous and triggered EMG monitored during surgery
- Origin Cerebellopontine angle
- Nucleus Facial nucleus, solitary nucleus, superior salivary nucleus


7. FACIAL NERVE

- Mixed sensory and motor
- Motor component monitored using spontaneous and triggered EMG monitored during surgery
- Origin Cerebellopontine angle
- Nucleus Facial nucleus, solitary nucleus, superior salivary nucleus

7. FACIAL NERVE

- Mixed sensory and motor
- Motor component monitored using spontaneous and triggered EMG monitored during surgery
- Origin Cerebellopontine angle
- Nucleus Facial nucleus, solitary nucleus, superior salivary nucleus

7. FACIAL NERVE

- Mixed sensory and motor
- Motor component monitored using spontaneous and triggered EMG monitored during surgery
- Origin Cerebellopontine angle
- Nucleus Facial nucleus, solitary nucleus, superior salivary nucleus

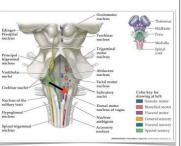
8. VESTIBULOCOCHLEAR NERVE

- Sensory
- Monitored during surgery using brainstem auditory evoked potentials
- Origin Cerebellopontine angle
- Nucleus Vestibular nucleus, cocnlear nucleus

9. GLOSSOPHARYNGEAL NERVE

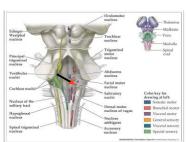
anchial motor

ecial sensory


- Mixed sensory and motor
- Motor component monitored using spontaneous and triggered EMG during surgery
- Origin Medulla
- Nucleus Nucleus ambiguus, inferior salivary nucleus, solitary nucleus

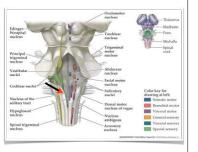
lerent)	Supplies the stylopharyngeus musc		
ferent)	Parasympathetic innervation of the smooth muscle and glands of the pharynx, larynx, and viscera of the thorax and abdomen.		
ferent)	Carries viscoral sensory information from the carotid sinus and body.		
ferent)	Provides general sensory information from the skin of the external ear, internal surface of the tympanic membrane, upper pharynx, and the membrane, upper pharynx, and the		

Provides taste sensation from the posterior one-third of the tongue.


9. GLOSSOPHARYNGEAL NERVE

- Mixed sensory and motor
- Motor component monitored using spontaneous and triggered EMG during surgery
- Origin Medulla
- Nucleus Nucleus ambiguus, inferior salivary nucleus, solitary nucleus

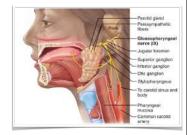
9. GLOSSOPHARYNGEAL NERVE


- Mixed sensory and motor
- Motor component monitored using spontaneous and triggered EMG during surgery
- Origin Medulla
- Nucleus Nucleus ambiguus, inferior salivary nucleus, solitary nucleus

9. GLOSSOPHARYNGEAL NERVE

• Mixed sensory and motor

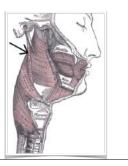
- Motor component monitored using spontaneous and triggered EMG during surgery
- Origin Medulla
- Nucleus Nucleus ambiguus, inferior salivary nucleus, solitary nucleus


9. GLOSSOPHARYNGEAL NERVE

• Mixed sensory and motor

* Motor component monitored using spontaneous and triggered EMG during surgery

• Origin - Medulla


 Nucleus - Nucleus ambiguus, inferior salivary nucleus, solitary nucleus

9. GLOSSOPHARYNGEAL NERVE

• EMG monitored from

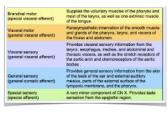
• Stylopharyngeus muscle of the soft palate

9. GLOSSOPHARYNGEAL NERVE

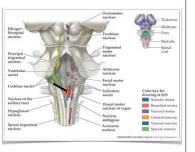
• EMG monitored from

 Stylopharyngeus muscle of the soft palate

10. VAGUS NERVE

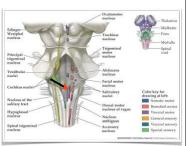

• Mixed sensory and motor

- Motor component monitored using spontaneous and triggered EMG during surgery
- Origin Medulla
- Nucleus Nucleus ambiguus, dorsal motor vagal nucleus, solitary nucleus

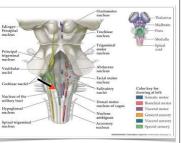

10. VAGUS NERVE

- Mixed sensory and motor
- Motor component monitored using spontaneous and triggered EMG during surgery
- Origin Medulla
- Nucleus Nucleus ambiguus, dorsal motor vagal nucleus, solitary nucleus

10. VAGUS NERVE


- Mixed sensory and motor
- Motor component monitored using spontaneous and triggered EMG during surgery
- Origin Medulla
- Nucleus Nucleus ambiguus, dorsal motor vagal nucleus, solitary nucleus

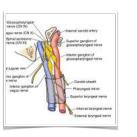
10. VAGUS NERVE


• Mixed sensory and motor

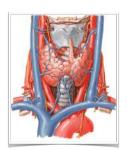
- Motor component monitored using spontaneous and triggered EMG during surgery
- Origin Medulla
- Nucleus Nucleus ambiguus, dorsal motor vagal nucleus, solitary nucleus

Mixed sensory and motor

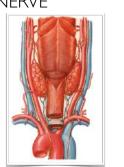
- Motor component monitored using
- spontaneous and triggered EMG during surgery
- Origin Medulla
- Nucleus Nucleus ambiguus, dorsal motor vagal nucleus, solitary nucleus


10. VAGUS NERVE

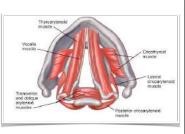
- Mixed sensory and motor
- Motor component monitored using spontaneous and triggered EMG during surgery
- Origin Medulla
- Nucleus Nucleus ambiguus, dorsal motor vagal nucleus, solitary nucleus


10. VAGUS NERVE

- Branchial motor fibers separate into three major branches
- Pharyngeal innervates all muscles of pharynx and soft palate excpt stylopharyngeus and tensor veli palatini
- Superior laryngeal innervates cricothyroid muscle
- Recurrent laryngeal innervates intrinsic muscles of larynx


10. VAGUS NERVE

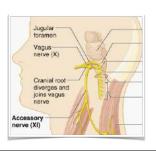
- Branchial motor fibers separate into three major branches
- Pharyngeal innervates all muscles of pharynx and soft palate excpt stylopharyngeus and tensor veli palatini
- Superior laryngeal innervates cricothyroid muscle
- Recurrent laryngeal innervates intrinsic muscles of larynx


10. VAGUS NERVE

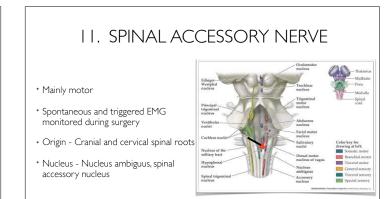
- Branchial motor fibers separate into three major branches
- Pharyngeal innervates all muscles of pharynx and soft palate excpt stylopharyngeus and tensor veli palatini
- Superior laryngeal innervates cricothyroid muscle
- Recurrent laryngeal innervates intrinsic muscles of larynx

10. VAGUS NERVE

- EMG monitored from
- Vocalis Muscle
- Monitored using endotracheal tube electrode or hookwires placed in vocalis muscle

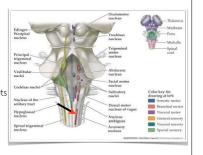


<image>


II. SPINAL ACCESSORY NERVE

• Mainly motor

- Spontaneous and triggered EMG monitored during surgery
- Origin Cranial and cervical spinal roots
- Nucleus Nucleus ambiguus, spinal accessory nucleus


II. SPINAL ACC	CESSORY N	NERVE
 Mainly motor Spontaneous and triggered EMG monitored during surgery Origin - Cranial and cervical spinal roots Nucleus - Nucleus ambiguus, spinal accessory nucleus 	Branchial motor - oranial root (special visceral efferent) Bronchial motor - spinal root (special visceral efferent)	Innervatos muscles of larynx and pharynx. Innervatos the trapezius and sterroodeidomastoid muscles.

II. SPINAL ACCESSORY NERVE

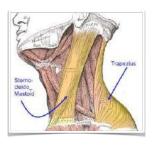
• Mainly motor

- Spontaneous and triggered EMG monitored during surgery
- Origin Cranial and cervical spinal roots
- Nucleus Nucleus ambiguus, spinal accessory nucleus

II. SPINAL ACCESSORY NERVE

Mainly motor

- Spontaneous and triggered EMG monitored during surgery
- Origin Cranial and cervical spinal roots
- Nucleus Nucleus ambiguus, spinal accessory nucleus

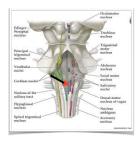


II. SPINAL ACCESSORY NERVE

• EMG monitored from

• Trapezius muscle

* Sternocleidomastoid muscle



12. HYPOGLOSSAL NERVE

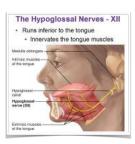
• Mainly motor

• Spontaneous and triggered EMG monitored during surgery

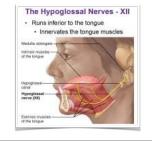
- Origin Medulla
- Nucleus Hypoglossal nucleus

12. HYPOGLOSSAL NERVE

• Mainly motor

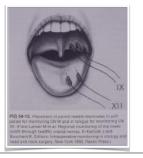

- Spontaneous and triggered EMG monitored during surgery
- Origin Medulla
- Nucleus Hypoglossal nucleus

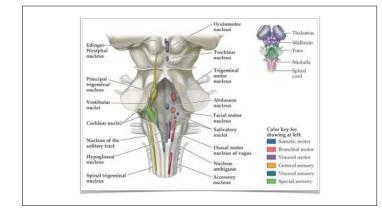
12. HYPOGLOSSAL NERVE

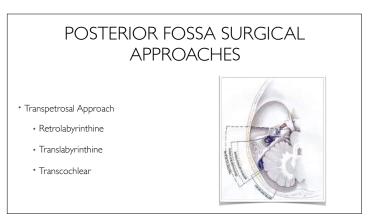

• Mainly motor

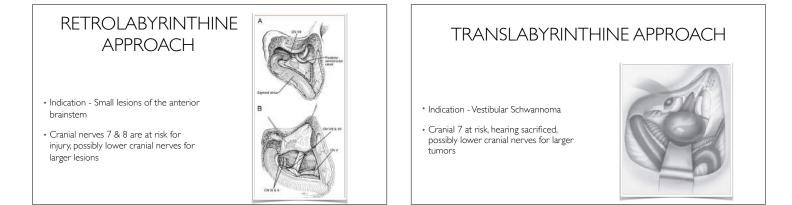
- Spontaneous and triggered EMG monitored during surgery
- Origin Medulla
- Nucleus Hypoglossal nucleus

12. HYPOGLOSSAL NERVE

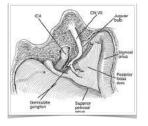

- EMG monitored from
- Anterior 2/3 of tongue
- Innervates all muscles of tongue except palatoglossus muscle




12. HYPOGLOSSAL NERVE


• EMG monitored from

- Anterior 2/3 of tongue
- Innervates all muscles of tongue except palatoglossus muscle


TRANSCOCHLEAR APPROACH

- Increases surgical exposure for complex lesions
- Hearing sacrificed, cranial nerve 7 likely to sustain injury during procedure

TRANSCOCHLEAR APPROACH

- Increases surgical exposure for complex lesions
- Hearing sacrificed, cranial nerve 7 likely to sustain injury during procedure

• Cranial nerves 7 & 8 at risk, lower cranial nerves for larger tumors

TRANSPETROSAL APPROACHES

Surgical Approach	Post-op Hearing Function	Post-op Facial Function
Retrolabyrinthine	Preserved	Preserved
, 	Sacrificed	Preserved
Translabyrinthine	Sacrificed	
Transcochlear	Sacrificed	Transient or permanent paralysis

FAR-LATERAL APPROACH Provides access to basilar and vertebral arteries Provides access to lateral and anterior brainstem Decreases need for cerebellar retraction Lower cranial nerves at risk for injury

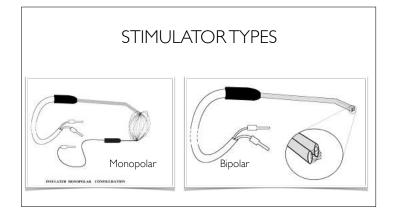
TRANSORAL APPROACH

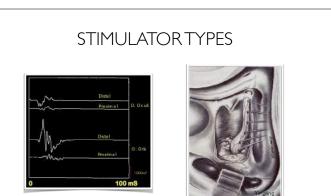
- Provides access to anterior extradural lesions
- Upper cranial nerves at risk for injury

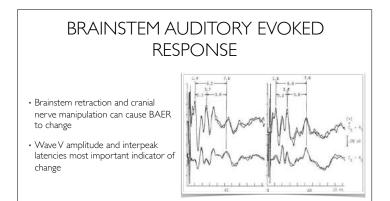
ANESTHETIC REQUIREMENTS

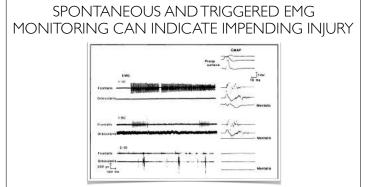
Motor Cranial Nerve EMG Monitoring

- No muscle relaxants
- No local anesthetics
- Auditory Brainstem Response Monitoring
- - Initial latency shift with induction


• Minimally effected by Propofol and


• Avoid Nitrous Oxide


inhalation agents


MONITORING TECHNIQUE

- Auditory Brainstem Evoked Response monitoring for brainstem and cochlear nerve function
- Monitor spontaneous EMG from motor cranial nerves to detect nerve irritation
- * Monitor triggered EMG from motor cranial nerves to test nerve function and to detect neural ischemia
- Two triggered EMG techniques
 - * Monopolar stimulation sensitive, used as searching to locate cranial nerves that may not be visible because of tumor
 - * Bipolar stimulation specific, used to test motor cranial nerve function during resection and to demonstrate that nerve is intact at completion of resection

